「ComplexRI」の版間の差分

提供: ComplexRI: Manual
ナビゲーションに移動 検索に移動
 
(同じ利用者による、間の217版が非表示)
1行目: 1行目:
__FORCETOC__
__FORCETOC__


== 概要例==
== 概要 ==
 本FreeFlexは、主に液体および界面系のさまざまな自由エネルギー計算に柔軟に対応できるMDプログラムとして開発された。液体界面でのwater finger座標によって初めてwater finger形成・切断の自由エネルギー障壁が明らかにされたように、既存の方法を超えた新たな座標が求められる場合も多い。<u>FreeFlexは、一般化座標の設定が容易で汎用性が高く、それに対する拘束条件やバイアス・ポテンシャルを課したり、その座標上の自由エネルギー計算を実行しやすいように設計された。</u>
 本ComplexRIは、全反射実験から得たデータを用いて、複素屈折率の分散を調べるためのWebアプリケーションである。複素屈折率の分散を調べることは和周波分光の解析に役立つ。界面SFG分光とは可視光と赤外光の2つの光を照射したときに、界面で選択的に発生する和周波光を検出するもので、2次の非線形効果を応用した分光法であり、近年液体界面や高分子界面などを含めた幅広い界面分析に応用されるようになった。この和周波発生はフレネル係数に大きく影響されており、また、フレネル係数は屈折率に依存した量である。そこで和周波分光を解析するには複素屈折率の分散を調べることが必要であり、本Complexそれを手軽に行えることを目的に開発された。


 現在のFreeFlexは、自由エネルギー計算手法として、
==主な特徴==
*自由エネルギー摂動法 (overlapping distribution法)
*全反射実験の実験データさえあれば、複素屈折率の分散を出すことが可能。
*アンブレラサンプリング法
*適用範囲は赤外領域。これは、和周波分光では官能基を調べることを目的としており、これに一致する光の周波数帯が赤外領域だからである。
*レプリカ交換アンブレラサンプリング法
の3通りをサポートしている。分子モデルは、点電荷および点双極子の分極モデルをサポートする。MD計算のチューニングについても多くの工夫がなされている。


==作成の経緯==
 和周波分光の結果をより正確に解析するための情報として様々な官能基に関する複素屈折率の分散を調べた論文<ref name = "ref1" /><ref name = "ref2" /><ref name = "ref3" />がある。これは全反射実験のデータに基づいて屈折率の分散をまとめたものになっている。本ComplexRIはこれに基づいて、全反射実験のデータさえ与えれば、同じようなフィッティングが簡単に行えるように開発された。<br />
 フィッティング計算には論文<ref name = "ref2" /><ref name = "ref3" />で用いられたものを主として用いている。これは、本研究室の王助教と以前森田グループに所属していた村田によって作成されたものである。本ComplexRIでは初期値を設定しなくてもフィッティングが行えるように、少しアルゴリズムを改良している。これは本研究室の森田教授、王助教の指導の下で上村が実装した。<br />
 また、WebアプリケーションとしてのUIも上村が実装した。


 FreeFlexは、吉川信明君が自らの研究のために作成していたMDプログラムを母体として、2014年度より汎用化を目指した開発が始められた。吉川君、王聆鉴君および森田が開発に加わり、液液界面に関わる吉川、聆鉴君それぞれの研究に必要なMDプログラムを包括する形で開発された。2015年より杉林君、2016年より田原君、2017年より平野君、内藤君、小泉さん、2018年より伊藤君が開発チームに加わって、液液界面での電子移動反応やfaciliated ion transfer、グランドカノニカルMDの研究へと進んでいる。また信田君によってparticle mesh Ewald法やOpenMP並列化が実装され、従来より格段に高速化した。
== チュートリアル ==
:チュートリアルでは4種類全10個の入力について、実際に解析を行い、その結果をもとに説明する。
{|class="wikitable"
! 目次(チュートリアル)
|-
|[[チュートリアル01|チュートリアル01]]:ファイルを入れて解析する(入力1⃣を与える練習)
|-
|[[チュートリアル02|チュートリアル02]]:解析に関する条件を指定する(入力4⃣を与える練習)
|-
|[[チュートリアル03|チュートリアル03]]:ファイルの形式を変える(入力2⃣を与える練習)
|-
|[[チュートリアル04|チュートリアル04]]:実験条件を正しく与える(入力3⃣を与える練習)
|}


== チュートリアル 例==
----


;[[チュートリアル01:水-DCM 界面のシミュレーション]]
==マニュアル==
: FreeFlex の基本的な使用方法のチュートリアルとして、コンパイル、系の作成、MD の実行といった一連の流れを説明する。
: また、計算結果を確認するために [[tools/show_energy.exe|show_energy.exe]] を用いてエネルギーの時間変化をグラフとして表示する。


== 概要 ==
本ComplexRIは全反射実験から得られた反射率あるいは吸光度のデータをもとにして媒質の複素屈折率の分散を出力するWebアプリケーションである。
より簡単に複素屈折率の分散を計算ができるように
<span style="font-size: 100%; color:red;>実験の条件、</span>
<span style="font-size: 100%; color:red;>実験の結果、</span>
<span style="font-size: 100%; color:red;>ファイル形式に関する入力、</span>
<span style="font-size: 100%; color:red;>解析に関する入力</span>
という四つの情報を入力として与えるだけで、その解析が行えるように作成された。
== チュートリアル ==
{|class="wikitable"
{|class="wikitable"
! 目次
! 目次(入力)
|-
|[[入力#入力01|入力01]]:タイトル
|-
|[[入力#入力02|入力02]]:ファイル
|-
|[[入力#入力03|入力03]]:反射率か吸光度か?
|-
|[[入力#入力04|入力04]]:波数範囲
|-
|[[入力#入力05|入力05]]:データの列の指定
|-
|[[入力#入力06|入力06]]:昇順か降順か?
|-
|[[入力#入力07|入力07]]:実験で用いた基質の種類
|-
|[[入力#入力08|入力08]]:入射角
|-
|[[入力#入力09|入力09]]:吸収がないときの屈折率
|-
|[[入力#入力10|入力10]]:残差の指定
|-
|[[入力#入力11|入力11]]:フィッティング関数のパラメータの設定の有無
|}
{|class="wikitable"
! 目次(出力)
|-
|-
|[[#チュートリアル01|チュートリアル01]]:複素屈折率の分散を解析してみよう。
|[[出力#出力01|出力01]]:数値
|-
|-
|[[#チュートリアル02|チュートリアル02]]
|[[出力#出力02|出力02]]:表
|-
|-
|[[#チュートリアル03|チュートリアル03]]
|[[出力#出力03|出力03]]:グラフ
|-
|-
|[[#チュートリアル04|チュートリアル04]]
|[[出力#出力04|出力04]]:アウトプットファイル
|}
|}


<div><span id="チュートリアル01"  style="font-size: 150%; color:Aqua;>チュートリアル01:複素屈折率の分散を解析してみよう。</span>➡[[#チュートリアル01の解説|チュートリアル01の解説へ]]</div>
----
<!--<span><div id="チュートリアル01"  style="font-size: 150%; color:Aqua;>チュートリアル01:複素屈折率の分散を解析してみよう。</div>➡[[#チュートリアル01の解説|チュートリアル01の解説へ]]</span>-->
: FreeFlex の基本的な使用方法のチュートリアルとして、コンパイル、系の作成、MD の実行といった一連の流れを説明する。
: また、計算結果を確認するために [[tools/show_energy.exe|show_energy.exe]] を用いてエネルギーの時間変化をグラフとして表示する。
: 概要でも説明してあるようにComplexRIでは基本的に以下の<span style="font-size: 100%; color:red;>三つ</span>を入力として与える必要がある。それは
: <span style="font-size: 100%; color:red;>1⃣</span>実験の条件
: <span style="font-size: 100%; color:red;>2⃣</span>実験の結果
: <span style="font-size: 100%; color:red;>3⃣</span>ファイル形式に関する入力
: <span style="font-size: 100%; color:red;>4⃣</span>解析の仕方に関する入力
: である。
: 入力の詳細の説明は後ですることにして、とりあえず入力を与え結果を出力してみよう。
: 実験結果のファイルとしてチュートリアル用のファイルを与えるのでこれらを使ってほしい。
: ファイルはComplexRIの<span style="font-size: 100%; color:red;>MANUALページ</span>の<span style="font-size: 100%; color:red;>File List</span>からダウンロードできる。
: 今回はチュートリアル01なので<span style="font-size: 100%; color:red;>Download the File fot Tutorial01</span>のボタンを押してダウンロードしてこれを使用してほしい。
: ダウンロード出来たら<span style="font-size: 100%; color:red;>LSRページ</span>に行き、後は入力を与えるだけだ。
: 入力は①から⑩の10個だ。与えたファイルはデフォルトの入力で解析できる構成になっているので、今回は<span style="font-size: 100%; color:red;>②File</span>にダウンロードしたファイルを与えるだけでよい。
: それでは<span style="font-size: 100%; color:red;>execute LSR</span>ボタンをクリックして解析してみよう。
<div id="チュートリアル01の解説" style="font-size: 120%; color:red;>チュートリアル01の解説</div>
: 解析結果は以下の画像のようなったはずである。
<span style="font-size: 170px; color:red;">画像</span>
: 後で確認するために<span style="font-size: 100%; color:red;>Download the output file</span>をクリックして出力ファイルをダウンロードしておいてほしい。
: それでは入力および出力の説明をしていこう。
: まず入力の説明からしていこう。最初に説明したように入力は
: [[#input1|1⃣実験の条件]]、[[#input2|2⃣実験の結果]]、[[#input3|3⃣ファイルの形式に関する入力]]、[[#input4|4⃣解析の仕方に関する入力]]
: の四種類がある。
: 一つずつ説明していこう。
<span id="input2" style="font-size: 130%; >2⃣実験の結果</span>
: 今回は入力欄の<span style="font-size: 100%; color:red;>②FILE</span>のみ入力したのであった。これが入力の<span style="font-size: 100%; color:red;>2⃣</span>である。
: まずその形式について説明しよう。ファイルは以下のようになっているはずである。
<span style="font-size: 170px; color:red;">画像</span>:
: 一列目には波数、二列目に一列目の波数の光が入射した時の反射率が(%)単位が並んだ構成になっている。
: これは実験結果として必要なのは波数とそれに対応する反射率の2種類だけであることを意味している。
<span id="input3" style="font-size: 130%; >3⃣ファイルの形式に関する入力</span>
: 次に入力の<span style="font-size: 100%; color:red;>3⃣</span>ファイル形式に関する入力について説明しよう。
: これは入力欄でいうと、<span style="font-size: 100%; color:red;>③、⑤、⑥</span>の3つに相当する。
: これらの入力をすることはファイル構成になっていることをアプリケーションに認識させるのが
: 入力ファイルと照らし合わせながら一つずつ説明していこう。
: まず<span style="font-size: 100%; color:red;>③Reflectance or Absorptance?</span>である。
: ここでは実験結果が反射率で与えられたのか、吸光度で与えられたのかを入力する。デフォルトは反射率で与えられたという回答になっている。今回のファイル形式は反射率で与えられているのでこの回答を変更する必要はなかったのである。
: まず<span style="font-size: 100%; color:red;>⑤the Lines Wavenumber and Intensity Ratio of Reflected Light are written on</span>である。
: ここではファイルの波数および反射率がその列並んでいるのかを入力する。デフォルトは波数は一行目、反射率は二行目に並んでいるという回答になっている。これは今回のファイル形式に一致しているのでこの回答も変更する必要はなかった。
: まず<span style="font-size: 100%; color:red;>⑥In what order are they arranged?</span>である。
: ここではファイルの波数が昇順、降順のどちらで並んでいるのかを入力する。デフォルトは昇順という回答になっている。これも今回のファイル形式に一致しているのでこの回答も変更する必要はなかった。
: 続いて、入力の<span style="font-size: 100%; color:red;>4⃣</span>解析の仕方に関する入力について説明しよう。
<span id="input4" style="font-size: 130%; >4⃣解析の仕方に関する入力</span>
: 次に<span style="font-size: 100%; color:red;>④wavenumber range for the analysis</span>である。
: ここでは複素屈折率の分散を解析したい
<span id="input1" style="font-size: 130%; >1⃣実験条件</span>


<div id="チュートリアル02" style="font-size: 100%; color:Aqua;>チュートリアル02:水-DCM 界面のシミュレーション</div>
==内部処理==
:➡[[#チュートリアル02の解説|チュートリアル02の解説へ]]
<div id="チュートリアル02の解説" style="font-size: 120%; color:red;>チュートリアル02の解説</div>
<div id="チュートリアル03" style="font-size: 100%; color:Aqua;>チュートリアル03:水-DCM 界面のシミュレーション</div>
:➡[[#チュートリアル03の解説|チュートリアル03の解説へ]]
<div id="チュートリアル03の解説" style="font-size: 120%; color:red;>チュートリアル03の解説</div>
<div id="チュートリアル04" style="font-size: 100%; color:Aqua;>チュートリアル04:水-DCM 界面のシミュレーション</div>
:➡[[#チュートリアル04の解説|チュートリアル04の解説へ]]
<div id="チュートリアル04の解説" style="font-size: 120%; color:red;>チュートリアル04の解説</div>


{|class="wikitable"
! 目次(内部処理)
|-
|[[説明01|説明01]]:フィッティング方法
|}
<span style="font-size: 100%; color:red;">※このページを見るにはブラウザとしてchromeを使用されることを推奨しています。ブラウザによっては読み込みにかなり時間がかかることがあります。</span>


[https://www.google.co.jp/ google]


[[#チュートリアル|チュートリアルtopへ]]
----


==内部処理の説明など==
==詳細==


{|class="wikitable"
{|class="wikitable"
! 目次
! 目次(詳細)
|-
|-
|[[#説明01|説明01]]:フィッティング方法
|[[詳細01|詳細01]]:ローレンツ関数を使う理由
|-
|-
|[[#説明02|説明02]]
|[[詳細02|詳細02]]:p波とs波の平均値で与えられる理由
|-
|-
|[[#説明03|説明03]]
|[[詳細03|詳細03]]:屈折率の虚部が吸収を表す理由
|-
|[[#説明04|説明04]]
|}
|}
<div id="説明01" style="font-size: 120%; color:Lime;>チュートリアル01の解説</div>
<div id="説明02" style="font-size: 120%; color:yellow;>チュートリアル02の解説</div>
<div id="説明03" style="font-size: 120%; color:orange;>チュートリアル03の解説</div>
<div id="解説04" style="font-size: 120%; color:purple;>チュートリアル04の解説</div>


  [[#内部処理の説明など|内部処理の説明などtopへ]]
----
 
  [http://comp.chem.tohoku.ac.jp/mediawiki/index.php/ComplexRI ComplexRIページtopへ]]


<span style="font-size: 170px; color:red;">[http://comp.chem.tohoku.ac.jp/mediawiki/index.php/ComplexRI ComplexRI]</span>
==参考文献==
<references>
<ref name = "ref1">"Effect of Frequency-Dependent Fresnel Factor on the Vibrational Sum Frequency Generation Spectra for Liquid/Solid Interfaces"
Lin Wang, Satoshi Nihonyanagi, Ken-ichi Inoue, Kei Nishikawa, Akihiro Morita, Shen Ye, Tahei Tahara, J. Phys. Chem. C, 123(25) 15665-15673 (2019).</ref>
<ref name = "ref2">"Dispersion of Complex Refractive Indices for Intense Vibrational Bands. II Implication to Sum Frequency Generation Spectroscopy"
Lin Wang, Ryo Murata, Ken-ichi Inoue, Shen Ye, and Akihiro Morita, J. Phys. Chem. B, 125(34), 9804-9810 (2021).</ref>
<ref name = "ref3">"Dispersion of Complex Refractive Indices for Intense Vibrational Bands. I Quantitative Spectra"
Ryo Murata, Ken-ichi Inoue, Lin Wang, Shen Ye, and Akihiro Morita, J. Phys. Chem. B, 125(34), 9794-9803 (2021).</ref>
</references>

2021年12月14日 (火) 08:19時点における最新版


概要

 本ComplexRIは、全反射実験から得たデータを用いて、複素屈折率の分散を調べるためのWebアプリケーションである。複素屈折率の分散を調べることは和周波分光の解析に役立つ。界面SFG分光とは可視光と赤外光の2つの光を照射したときに、界面で選択的に発生する和周波光を検出するもので、2次の非線形効果を応用した分光法であり、近年液体界面や高分子界面などを含めた幅広い界面分析に応用されるようになった。この和周波発生はフレネル係数に大きく影響されており、また、フレネル係数は屈折率に依存した量である。そこで和周波分光を解析するには複素屈折率の分散を調べることが必要であり、本Complexそれを手軽に行えることを目的に開発された。

主な特徴

  • 全反射実験の実験データさえあれば、複素屈折率の分散を出すことが可能。
  • 適用範囲は赤外領域。これは、和周波分光では官能基を調べることを目的としており、これに一致する光の周波数帯が赤外領域だからである。

作成の経緯

 和周波分光の結果をより正確に解析するための情報として様々な官能基に関する複素屈折率の分散を調べた論文[1][2][3]がある。これは全反射実験のデータに基づいて屈折率の分散をまとめたものになっている。本ComplexRIはこれに基づいて、全反射実験のデータさえ与えれば、同じようなフィッティングが簡単に行えるように開発された。
 フィッティング計算には論文[2][3]で用いられたものを主として用いている。これは、本研究室の王助教と以前森田グループに所属していた村田によって作成されたものである。本ComplexRIでは初期値を設定しなくてもフィッティングが行えるように、少しアルゴリズムを改良している。これは本研究室の森田教授、王助教の指導の下で上村が実装した。
 また、WebアプリケーションとしてのUIも上村が実装した。

チュートリアル

チュートリアルでは4種類全10個の入力について、実際に解析を行い、その結果をもとに説明する。
目次(チュートリアル)
チュートリアル01:ファイルを入れて解析する(入力1⃣を与える練習)
チュートリアル02:解析に関する条件を指定する(入力4⃣を与える練習)
チュートリアル03:ファイルの形式を変える(入力2⃣を与える練習)
チュートリアル04:実験条件を正しく与える(入力3⃣を与える練習)

マニュアル

目次(入力)
入力01:タイトル
入力02:ファイル
入力03:反射率か吸光度か?
入力04:波数範囲
入力05:データの列の指定
入力06:昇順か降順か?
入力07:実験で用いた基質の種類
入力08:入射角
入力09:吸収がないときの屈折率
入力10:残差の指定
入力11:フィッティング関数のパラメータの設定の有無
目次(出力)
出力01:数値
出力02:表
出力03:グラフ
出力04:アウトプットファイル

内部処理

目次(内部処理)
説明01:フィッティング方法

※このページを見るにはブラウザとしてchromeを使用されることを推奨しています。ブラウザによっては読み込みにかなり時間がかかることがあります。



詳細

目次(詳細)
詳細01:ローレンツ関数を使う理由
詳細02:p波とs波の平均値で与えられる理由
詳細03:屈折率の虚部が吸収を表す理由

ComplexRIページtopへ]

参考文献

  1. "Effect of Frequency-Dependent Fresnel Factor on the Vibrational Sum Frequency Generation Spectra for Liquid/Solid Interfaces" Lin Wang, Satoshi Nihonyanagi, Ken-ichi Inoue, Kei Nishikawa, Akihiro Morita, Shen Ye, Tahei Tahara, J. Phys. Chem. C, 123(25) 15665-15673 (2019).
  2. 2.0 2.1 "Dispersion of Complex Refractive Indices for Intense Vibrational Bands. II Implication to Sum Frequency Generation Spectroscopy" Lin Wang, Ryo Murata, Ken-ichi Inoue, Shen Ye, and Akihiro Morita, J. Phys. Chem. B, 125(34), 9804-9810 (2021).
  3. 3.0 3.1 "Dispersion of Complex Refractive Indices for Intense Vibrational Bands. I Quantitative Spectra" Ryo Murata, Ken-ichi Inoue, Lin Wang, Shen Ye, and Akihiro Morita, J. Phys. Chem. B, 125(34), 9794-9803 (2021).