「Input」の版間の差分
ナビゲーションに移動
検索に移動
92行目: | 92行目: | ||
: where <math> n_j^0 </math> is input in ⑨. The number of Lorentz functions <math> l_{max} </math>, and the corresponding parameters <math> A_l, \nu_l, \gamma_l </math> should be determined. | : where <math> n_j^0 </math> is input in ⑨. The number of Lorentz functions <math> l_{max} </math>, and the corresponding parameters <math> A_l, \nu_l, \gamma_l </math> should be determined. | ||
: By selecting <math> No </math>, it means the initial parameters are automatically guessed by the algorithm explained in the <u>[[explanation01|explanation01]] </u>of<u> [[En/ComplexRI#Internal processing |Internal processing]] </u>. | : By selecting <math> No </math>, it means the initial parameters are automatically guessed by the algorithm explained in the <u>[[explanation01|explanation01]] </u>of<u> [[En/ComplexRI#Internal processing |Internal processing]] </u>. | ||
: By selecting <math> Yes </math>, you can manually set <math> | : By selecting <math> Yes </math>, you can manually set <math> l_{max} </math> and <math> A_l, \nu_l, \gamma_l </math> for each Lorentz function by yourself. <math> l_{max} </math> is up to 5. | ||
: [[File:11yes.png|500px]] | : [[File:11yes.png|500px]] |
2021年12月21日 (火) 06:49時点における版
- This is the typical snapshot of the input of ComplexRI.
- The input of Complex contains two parts. The first part is the information of ATR-IR experimental data. The second part is the control parameters of the complex refractive index fitting procedure. Each part will be explained in the following.
Information of ATR-IR experiment
①ATR-IR File
- Please upload the ATR-IR experimental data in this part. The inside should be like the following.
- There are two rules for the format of input file.
- (1). The format of input file must be txt.
- (2). The columns are separated by the space.
②The order of data
- Please select the sort order of your data.
- Ascending order: The frequencies in the input file are in ascending order (left picture). (Default)
- Descending order: The frequencies in the input file are in descending order (right picture).
③Reflectance or Absorptance?
- Please select the type of your ATR-IR data.
- Reflectance(%): The Reflectance of ATR-IR spectra in the value of percentage. (Default)
- Reflectance: The Reflectance of ATR-IR spectra.
- Absorptance: The Absorptance of ATR-IR spectra.
- The relationships between each data are
④The Substrate in ATR-IR
- Please select the substrate you used in the ATR-IR experiment. Here, we prepare the three substrates often used
- Diamond(Refractive Index = 2.38)
- Zinc selenide(Refractive Index = 2.40)
- Germanium(Refractive Index = 4.0).
- You can also input the refractive index of your substrate by selecting Others in the list.
⑤Incident angle in ATR-IR
- Please input the incident angle in your ATR-IR experiment. (Default=45 degree)
⑥Select the column of your data
- Please input the column number of the data you want to analyze in your ATR-IR file.
- Wavenumber: The column number of wavenumber in your input file. (Default: 1)
- ATR-IR data: The column number of ATR-IR data in your input file. (Default: 2)
- For example, an input file like following can be uploaded and column 1 and column 5 can be selected for analyzing.
Control parameters of ComplexRI fitting
⑦Title of your job
- Please input the title of your job (alphabet). The output results of ComplexRI will be saved in the excel format with the name @Title.xlsx
⑧Input the fitting range
- Please input the frequency range (in wavenumber) you want to perform the fitting. ComplexRI will fit the data only inside the range you input here.
- Minimum wavenumber: The lower boundary of wavenumber. (Default: 1636)
- Maximum wavenumber: The upper boundary of wavenumber. (Default: 1863)
⑨Refractive index of target sample in non-resonance region ()
- Please input the refractive index of the target sample () in non-resonance region. (Default=1.360)
- should be determined before the fitting procedure (see Equation in ⑪). In the reference paper, we use the refractive index values in the visible regions to fit Cauchy's equation.
- The obtained parameters were used to evaluate the refractive index at 5000 wavenumber.
⑩The tolerance of fitting
- Please input the tolerance of fitting procedure. The fitting will be finished when the calculated residual is less than this value.
- The details are written in the explanation01 of Internal processing.
- Notice!! Fitting can not finish if this value is too small.
⑪ Manually set the initial parameters
- Please select whether to set the initial fitting parameters by yourself.
- No: Automatically done by the algorithm (Default)
- Yes: Manually set the initial parameters by users.
- In the fitting, we use a set of Lorentz functions to represent the complex refractive index
- where is input in ⑨. The number of Lorentz functions , and the corresponding parameters should be determined.
- By selecting , it means the initial parameters are automatically guessed by the algorithm explained in the explanation01 of Internal processing .
- By selecting , you can manually set and for each Lorentz function by yourself. is up to 5.